2024. 3. 15. 19:40ㆍ수학/확률과 랜덤변수
Random variable X: a function that assigns a real number X() to each outcome in the sample space of a random experiment
sample space S의 사건을 함수 X를 통해 확률변수로 만들어준다
Classification of Random Variables
이산(Discrete)
연속(Continuous)
cdf
복합(Mixed Type)
3.2 Probabiltiy Mass Function (pmf)
확률질량함수
X = 변수
x = realization
The pmf of a discrete RV(Random variable) X is defined as:
pX(x) = P[X = x] = P[{ζ: X(ζ) = x}] for x a real number
[EX 3.6] A Betting Game
H x 0 and H x 1 → $0
H x 2 → $1
H x 3 → $8
3.3 Expected Value
Expected Value(Mean) of X
$$m_x=E\left[X\right]=\sum _{x\in S_X}^{ }xp_X\left(x\right)=\sum _k^{ }x_kp_X\left(x_k\right)$$
* 조건
$$E\left[\left|{X}\right|\right]=\sum _k^{ }\left|{x_k}\right|p_X\left(x_k\right)<\infty $$
Expected Value of function
$$Z=g\left(x\right)$$로 두자
$$E\left[Z\right]=E\left[g\left(X\right)\right]=\sum _k^{ }g\left(x_k\right)p_X\left(x_k\right)$$
$$\sum _k^{ }g\left(x_k\right)p_X\left(x_k\right)=\sum _j^{ }z_j\left\{{\sum _{x_k:g\left(x_k\right)=z_j}^{ }p_X\left(x_k\right)}\right\}=\sum _j^{ }z_jp_Z\left(z_j\right)=E\left[Z\right]$$
3.3.2 Variance (분산)
- 분산
$$\sigma ^2=VAR\left[X\right]=E\left[\left(X-m\right)^2\right]=\sum _{ }^{ }\left(x-m_X\right)^2p_X\left(x\right)=E\left[X^2\right]-m_X^2$$
- 표준편차
$$\sigma _X=STD\left[X\right]=VAR\left[X\right]^{\frac{1}{2}}$$
- 분산성질
3.4 Conditional PMF
- 주어진 사건 C의 X의 조건부 pmf
$$p_X\left(x\mid C\right)=p\left[{X=x\mid C}\right]=\frac{P\left[\left\{X=x\ \right\}\cap C\right]}{P\left[C\right]}$$
- 성질
$$p_X\left(x\mid C\right)\ge 0,\ \ \forall x$$$$\sum _{x_k\in S_X}^{ }p_X\left(x_k\mid C\right)=1$$$$P\left[X\ in\ B\mid C\right]=\sum _{x\in B}^{ }p_X\left(x\mid C\right),\ \ where\ B\subset S_X$$
uniform random variable를 이용하여 m 시간 이후에 m+j 시간에 메세지가 전송될 확률 구하기
Conditional Expected value (of given B)
$$m_{X\mid B}=E\left[X\mid B\right]=\sum _{x\in S_X}^{ }xp_X\left(x\mid B\right)=\sum _k^{ }x_kp_X\left(x_k\mid B\right)$$
Conditional Variance
$$VAR\left[X\mid B\right]=E\left[\left(X-m_{X\mid B}\right)^2\mid B\right]=\sum _{k=1}^{\infty }\left(x_k-m_{X\mid B}\right)^2p_X\left(x_k\mid B\right)=E\left[X^2\mid B\right]-m_{X\mid B}^2$$
Total Probabiltiy Theorem
$$P\left[X\right]=\sum _{i=1}^nP\left[X\mid B_i\right]P\left[B_i\right]\ \ \ \to \ E\left[X\right]=\sum _{i=1}^nE\left[X\mid B_i\right]P\left[B_i\right]$$
$$P\left[X\right]=\sum _{i=1}^nP\left[X\mid B_i\right]P\left[B_i\right]\ \ \ \to \ E\left[g\left(X\right)\right]=\sum _{i=1}^nE\left[g\left(X\right)\mid B_i\right]P\left[B_i\right]$$
'수학 > 확률과 랜덤변수' 카테고리의 다른 글
다양한 이산 랜덤 변수 (0) | 2024.03.15 |
---|